skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Williams-Baldwin, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present our analysis of supernovae serendipitously found to be radio-bright several years after their optical discovery. We used recent observations from the Australian SKA Pathfinder (ASKAP) taken as part of the pilot Variables and Slow Transients and Rapid ASKAP Continuum Survey programmes. We identified 29 objects by cross-matching sources from these ASKAP observations with known core-collapse supernovae below a declination of $$+40^{\circ }$$ and with a redshift of $$z\le 0.15$$. Our results focus on eight cases that show potential late-time radio emission. These supernovae exhibit significantly greater amounts of radio emission than expected from the standard model of a single shockwave propagating through a spherical circumstellar medium, with a constant density structure produced by regular stellar mass-loss. We also discuss how we can learn from future ASKAP surveys about the circumstellar environments and emission mechanisms of supernovae that undergo late-time radio re-brightening. This pilot work tested and confirmed the potential of the Variables and Slow Transients survey to discover and study late-time supernova emission. 
    more » « less
  2. Abstract We present multifrequency (5–345 GHz) and multiresolution radio observations of 1ES 1927+654, widely considered one of the most unusual and extreme changing-look active galactic nuclei (CL-AGNs). The source was first designated a CL-AGN after an optical outburst in late 2017 and has since displayed considerable changes in X-ray emission, including the destruction and rebuilding of the X-ray corona in 2019–2020. Radio observations prior to 2023 show a faint and compact radio source typical of a radio-quiet AGN. Starting in 2023 February, 1ES 1927+654 began exhibiting a radio flare with a steep exponential rise, reaching a peak 60 times previous flux levels, and has maintained this higher level of radio emission for over a year to date. The 5–23 GHz spectrum is broadly similar to gigahertz-peaked radio sources, which are understood to be young radio jets less than ∼1000 yr old. Recent high-resolution Very Long Baseline Array observations at 23.5 GHz now show resolved extensions on either side of the core, with a separation of ∼0.15 pc, consistent with a new and mildly relativistic bipolar outflow. A steady increase in the soft X-ray band (0.3–2 keV) concurrent with the radio may be consistent with jet-driven shocked gas, though further observations are needed to test alternate scenarios. This source joins a growing number of CL-AGNs and tidal disruption events that show late-time radio activity, years after the initial outburst. 
    more » « less
    Free, publicly-accessible full text available January 20, 2026
  3. Abstract We present the discovery of the radio afterglow of the short gamma-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift ofz∼ 2.4. While radio observations commenced ≲1 day after the burst, no radio emission was detected until ∼11 days. The radio afterglow subsequently brightened by a factor of ∼3 in the span of a week, followed by a rapid decay (a “radio flare”). We find that a forward shock afterglow model cannot self-consistently describe the multiwavelength X-ray and radio data, and underpredicts the flux of the radio flare by a factor of ≈5. We find that the addition of substantial energy injection, which increases the isotropic kinetic energy of the burst by a factor of ≈4, or a reverse shock from a shell collision are viable solutions to match the broadband behavior. Atz∼ 2.4, GRB 210726A is among the highest-redshift short GRBs discovered to date, as well as the most luminous in radio and X-rays. Combining and comparing all previous radio afterglow observations of short GRBs, we find that the majority of published radio searches conclude by ≲10 days after the burst, potentially missing these late-rising, luminous radio afterglows. 
    more » « less